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Inviscid flow of a reacting mixture of gases 
around a blunt body 

By WILBERT LICK 
Pierce Hall, Harvard University, Cambridge, Mms. 

(Received 13 April 1959) 

A general numerical procedure is described whereby the details of the steady 
inviscid flow of a mixture of perfect gases about a blunt body, including the 
effects of finite dissociation and recombination rates, may be calculated. Several 
numerical examples are calculated in order to apply the numerical procedure to 
specific cases and also to show the effects of finite reaction times on the flow about 
a blunt body. 

1. Introduction 
A considerable amount of effort has been expended recently on the problem of 

predicting the flow about a blunt body, particularly at high speeds. Almost all of 
the published papers on this problem have dealt with flow in chemical equilibrium. 
However, at hypersonic speeds and therefore with high temperatures near the 
body, the assumption of equilibrium flow becomes questionable. Recent studies 
(Gum 1952; Logan 1957; Freeman 1957) have indicated that finite reaction times 
may have an appreciable effect on the flow properties. A detailed analysis of the 
non-equilibrium flow is necessary to predict the flow field accurately. 

After presenting the fundamental equations and boundary conditions for the 
inviscid non-heat-conducting flow of a mixture of perfect gases, the present paper 
describes an inverse method whereby, if the form of the detached shock wave is 
known or is assumed, the field behind the shock and the corresponding shape of 
the body may be found. For the continuation of the solution in the supersonic 
region, a method of characteristics is presented. In  order to perform numerical 
computations, a rough analysis of dissociation and recombination rates is made. 
The results of several numerical calculations are then presented. 

Although the theory and numerical procedure can be easily extended to include 
finite reaction times for rotation, vibration and ionization, the assumption is made 
that the rotational and vibrational degrees of freedom are in equilibrium with the 
translational degrees of freedom, while ionization is neglected. The rate of change 
of the various components of the gas mixture towards their equilibrium distribu- 
tion, i.e. towards local thermodynamic equilibrium of the complete system, is 
governed by dissociation and recombination rate equations. Diffusion of the 
gases is neglected. 
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2. Fundamental equations and boundary conditions 
For each of the n components of the gas, the equation of state is 

where pi denotes the pressure, p i  the density, and Mi the molecular weight of the 
ith component of the gas. The equation of state for a mixture of perfect gases is 
obtained bv summation and is 

where 1 Pr 1 
2 = =---. i PMi 

The conservation equations for a gas mixture have been given by Hirschfelder, 
Curtiss & Bird (1954), Penner (1955), and others. They are presented here in 
the most convenient form for the present analysis subject to the previous 
approximations. 

For each component of the gas, the continuity equation is 

v .  (PiV) = wi,  ( 2 )  

where V is velocity, and wi represents the mass rate of production of the com- 
ponent by chemical reaction. By summation over all components of the gas, the 
overall continuity equation is obtained 

v . (pV) = 0. (3) 

By use of the above equation, (2) can be rewritten in the form 

DCti mi - = (V.V)ai  = - 
Dt P '  (4) 

where ai = p i / p .  
The momentum equation is simply 

p ( V . V ) V + V p  = 0. (5) 

The energy equation is d ( h  + iV2) = 0, (6) 

where h = aihi, and hi is the enthalpy of each component of the gas, which can 

be separated into energies due to the active degrees of freedom (translational, 
rotational and vibrational), the energy of dissociation, and a term pilpi: thus 

i 

The enthalpy of each component of the gas depends only on the temperature and 
can be calculated from the equations 

9 Fluid Mech. 7 
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The B’s are known functions of the temperature, while the dissociation energy D 
is a constant. By use of the above relations, the energy equation can be written 
in the two equivalent forms 

R R C uiPi - dT + )3 ui- T dPi + z hidai +d (+Vz) = 0, 
i Mi i Mi i 

cp4dT + z h,da, +d (4V2) = 0,  (7b)  
i 

where cpa = 2 atcpui. 

It is assumed that, at a wall, the gas does not interact chemically with the wall, 
i.e. the wall is non-catalytic. At the solid boundary, the velocity component 
normal to the wall must be zero; the tangential component is not subject to 
constraint since the fluid is inviscid. 

The boundary conditions at a shock wave can be simplified by resolving the 
free-stream velocity into components normal and tangential to the shock. The 
shock transition can then be regarded fromalocal co-ordinate systemmovingwith 
a speed equal to the tangential component of velocity. If all the vibrational 
relaxation distances are very short in comparison with dissociation relaxation 
distances and in comparison with a typical body dimension, then the properties 
of the gas immediately after the vibrational degrees of freedom have come to 
equilibrium and before dissociation has begun may be found by treating the flow 
by one-dimensional analysis. 

The continuity, momentum, and energy equations for one-dimensional flow 
through a normal shock are, in a usual notation, 

P m V m  = PSVS = Cl, 

i 

where the subscript a3 refers to free stream conditions in front of the shock and the 
subscript s refers to conditions immediately behind the shock. Since it is assumed 
that dissociation has not begun, the enthalpy immediately behind the shock can 

be written as Pa M 
h, = ?,;, where p = ~ L X ~ - / ? ~ .  

i Mi 
The normal-shock equations plus the equation of state must be solved by an 

iteration procedure because of the dependence of the pi’s on the temperature and 
the resulting algebraic complexity of the equations. To accomplish this, the 
density ps can be found as a function of the temperature, and v,, p,, and T, can be 
found in terms of 0,: thus 
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Once the free stream conditions are known, cl, c,, and c, can be calculated. By 
assuming T,, ?, can be calculated and equations (11) to (14) can be solved in 
succession. The process is continued until the assumed T, and the T, calculated 
from (14) agree to the desired accuracy. 

3. Inverse method of axisymmetric flow 
The inverse method of finding the body shape and the flow field behind 

a detached shock when the form of the shock wave is given has been successfully 
applied by other investigators (Zlotnick & Newman 1967; Van Dyke 1958) to the 
blunt body problem with the restrictions of equilibrium flow, a perfect gas, and 
constant specific heats. Although the inverse problem as presented here and by 
the above authors is a Cauchy problem for elliptic equations and is therefore 
improperly given, it has been shown that accurate solutions may be found by this 
method if proper care is taken. 

FIUURE 1. Co-ordinate system. Shock radius of ourvature at z = 0 is B,,. 

To simplify the analysis, i t  is advantageous to choose a natural co-ordinate 
system which contains the shock wave as one of its surfaces, is applicable to 
a wide range of shock shapes, and is not restricted to a particular family of curves. 
Such an orthogonal curvilinear co-ordinate system is shown in figure 1. The origin 
of the co-ordinate system is taken at the intersection of the shock and the axis of 
symmetry. Let x be the distance along the shock surface, and let y be the co- 
ordinate normal to the shock surface. Let u and v be respectively the velocities in 
the x- and y-directions. Let 

de I K = - = - -  
dx R’ 

where K is a known function of x for a given shock shape. The local shock 
radius of curvature is R, and 8 is the local angle which the shock makes with the 
free stream. 

9-2 
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The equations of motion, written in the above co-ordinate system, are 

aa, +v-=Wi aai 
i + K y a x  ay p 7  
-_ 

a a 
- [purl + - [pvr( 1 + Ky)] = 0, ax a Y  

au au lap 
u-+Kuv+(l+Ky)v- = --- ax ay pax' 

av av 1 +Kyap u-+ (1 +Ky) 2,- -KU2 = -- - ax aY P aY '  

(19) 
R R x aipi ;i? dT + C, ai - TdPi + hi dai + d( iV2)  = 0. 

i i Mi i 

The additional relation that is needed is the equation of state 

R 
P = P B T ,  

and the reaction rates must also be known. 

relations for the y-derivatives of ai, u, v, p, and p, where the substitutions 
Algebraic manipulation of the above equations yields the following set of 

have been made : 

K, = xai--pi, R K ,  = xui---- R dPi 

1 ap -Kuv - - 

i Mi i MidT 

""1 ax 

$[;+(K,+K,T) 1 Mu =----c au - - (K K T 

K,+K,T M av 

au 1 _ -  
ay - v(l+Ky) [ - p a .  

F 1+ 2 ) - -  MI aai 
(v RT) Tay i 2Mi a Y  

+ u--Ku, -- 
i+Ky [m( ax ) 

The boundary conditions at points at  equal intervals along the shock can be 
found by the procedure described previously. The x-derivatives of all dependent 
variables can then be easily calculated. Once the dependent variables and their 
x-derivatives are known along the line y% = const., the above equations can be 
solved successively and yield the derivatives in a direction normal to the shock. 

The quantities (u, for example) at  a station yn+l can then be found, as a first 
approximation, by linear extrapolation 
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From the equation of state, the temperature is determined. The pi's, which can be 
written as simple polynomials dependent on T, can then be calculated. All 
derivatives of the functions at  yn+l are subsequently found in a similar manner. 
An improved value for the function at yn+l can be evaluated by using the average 
of the derivatives in the y-direction at stations n and n + 1 or 

The iteration procedure is then continued until the desired accuracy is obtained. 
The integration proceeds in a direction normal to the shock by applying this 

method to successive intervals in the y-direction. 
The surface of the body is determined by applying a continuity analysis to the 

flow. The mass flow in the x-direction through the surface x = x1 between the 
shock and station yN is 

N-1 

1 
npsusrsAYo0,1 + n C Pnunrn(AYn-1, n + AYn, n+J + ~ P N  U N ~ N  AYN-~, N - 

The mass flow through the shock between x = 0 and x = x1 is np, Vm<. The body 
surface can then be determined by calculating the y-ordinate at  which the two 
mass flows are equated. 

4. Method of characteristics 
As x increases, the distance from the body to the shock also increases, and 

a larger number of intervals are required to reach the body by the inverse method 
causing large errors to develop before the body is reached, A more suitable 
procedure of extending the solution is by the method of characteristics. The calcu- 
lations by the inverse method in the supersonic region can also be checked by the 
method of characteristics. The characteristic equations will be presented for both 
plane and axisymmetric flows using rectangular Cartesian co-ordinates. 

By using the standard techniques, the characteristic equations and directions 
can be found. The characteristic directions correspond to (1)  the streamlines, 
along which the following characteristic equations apply : 

Udy-Vdx = 0, (26) 

aai aai ui 
ax aY P 

u-++- = -, 

and (2) the Mach lines, along which the following characteristic equations apply: 

3 = tan (0 t a), 
dx 



134 Wilbert Lick 

where a is the angle which the Mach lines make with the streamline, a is the 
' frozen ' speed of sound defined as 

where ya is the ratio of specific heats of the active degrees of freedom, and 8 is-the 
angle of flow inclination. 

The method of solution by the application of the above characteristic equations 
is similar in almost all respects to the ordinary methods developed for equilibrium 
flow except that in addition the rate of change of the n components of the gas 
along a streamline are to be determined by the n equations (27). 

5. Reaction rates 
The explicit forms of the terms uf which determine the rate of production of the 

various components of the gas have not yet been discussed. Since air is composed 
mainly of oxygen and nitrogen and it is assumed that other components have 
a negligible effect on the reaction rates for oxygen and nitrogen, only the dissocia- 
tion and recombination rates of these two gases will be treated here. The following 
presentation is based on Logan's modification of simple collision theory and 
attempts to account approximately for the effects of the interaction of the 
internal degrees of freedom during the collision process. 

Air is assumed to consist of oxygen and nitrogen atoms and molecules only. The 
process of dissociation, which involves collisions between a molecule and some 
other particle, is considered first. Since only simple molecules and atoms are 
present, the number of pairs of rotational degrees of freedom which are effective 
in transferring energy during the collision process is assumed to be one. 

By considering the molecules in each vibrational state as a separate species, the 
energy required to dissociate a molecule in its nth vibrational state is then D - En, 
where D is the dissociation energy and En is the vibrational energy of the nth 
state. The rate of dissociation for a diatomic molecule considering all vibrational 
states is given by 

where v is the number of particles per unit volume, and an represents the per- 
centage of molecules in each vibrational state. From statistical mechanics, we 
have a, = aoexp ( - E,/kT), 

where a. is the percentage of molecules in the zeroth vibrational state. Z is the 
total number of collisions per unit volume and per unit time and is given by 

where k is Boltzmann's constant, d,, is the average diameter and is the reduced 
mass of the colliding particles, and g12 is a symmetry factor which is equal to one 
if the colliding particles are of different species and is equal to two if of the same 
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species. The subscript 1 refers to the molecules under consideration and the 
subscript 2 refers to all other colliding particles. 

The additional assumption is made that all reaction partners are equally 
effective in causing dissociation. The rate of dissociation for the molecules m can 
then be written in the form 

= - k , v m x v t ,  
at i 

T (1Oa OK) 

FIGURE 2. Dissociation and recombination rate constants for nitrogen. 

where La is the dissociation rate constant and is a function of temperature only. 
The summation is to be taken over all particles i. By equating equations (31) and 
(321, kd can be evaluated. 

Similarly, for the case of recombination, which requires a three-body collision 
between two atoms a and another particle i, the rate can be written as 

The recombination rate constant k, can now be evaluated using equilibrium 
theory. At equilibrium 

= k , v ~ ~ v i - k , v m ~ v t  = 0, 
at i i 
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and therefore 
(34) 

where Ke is the equilibrium constant and is a known function of temperature. 
The dissociation and recombination rate constants were evaluated for both 

nitrogen and oxygen. The results are shown in figures 3 and 3. The variable wi is 
related to the above rate constants by 

Mi dvi 
a N a t '  
0. = -- 

where N is Avagadro's number. 

'0-93 

L 

0" 
&? 

10 - 33 

LO-% 

T ( 1 0 3 0 ~ )  

FIGURE 3. Dissociation and recombination rate constants for oxygen. 

6. Numerical computations 
By using the inverse method, the method of characteristics, and the previously 

determined dissociation and recombination rates, four numerical examples were 
calculated for the flow of a gas through a specified shock shape at a Mach number 
of 14 and for free-stream density and temperature corresponding to the density 
and temperature of air at an altitude of 100,000 ft. The calculation of the boundary 
conditions and the inverse method were programmed in floating point on the 
IBM 650. The flow conditions in the supersonic region calculated by the inverse 
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method were partially checked and slightly extended by hand computation using 
the method of characteristics. 

The gas treated in the first three examples consisted of a mixture of oxygen and 
nitrogen in the same ratio to each other as in atmospheric air, an approximation 
to the real composition of air. To show the effects of non-equilibrium flow, various 
shock radii were chosen, so that a typical relaxation distance for oxygen dissocia- 
tion near the stagnation streamline in comparison with the detachment distance 
was (i) small and the flow was practically in equilibrium throughout, (ii) of the 
same order of magnitude and the flow was only partially in equilibrium, and 
(iii) very large and no dissociation or recombination occurred. 

1.6 I I I I I 

1.4 - 

1.2 - 

1.0 - 

I I I I I 
0 0 2  0 4  0.6 0 8  1 .o 

- z 

FIGURE 4. Shape of assumed shock. 

To demonstrate also the effects of non-equilibrium flow on a pure gas, numerical 
results were obtained for the flow of pure oxygen for the case (ii) mentioned 
above. 

To begin the computations, the shape of the shock must be specified. Pre- 
ferably, the assumed shock shape must resemble closely the shocks produced by 
typical blunt-nosed bodies. For convenience in numerical computations, an 
analytic shock shape is desired wherein all shock variables dependent on the 
co-ordinate system such as d8/dx,  sin 8, cos 8, and the position variables of the 
shock, r and z, can be expressed in terms of x, the co-ordinate parallel to the shock 
surface (see figure 1). 
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These properties are fulfilled by the curve known as the catenary, which is 
compared with the parabola and circle in figure 4 and which is given by 

where the bars denote quantities made non-dimensional with respect to R,, the 
radius of curvature of the shock on the axis of symmetry. Of course, the co- 
ordinate system can be adapted to an almost completely arbitrary shock shape-as 
produced by blunt-nosed bodies including shock shapes with inflexion points. 

By using the iteration procedure described previously, the conditions at the 
shock were calculated at 50 values of 5 at equally spaced intervals AE = 0.04 
starting at 5 = 0.02 in order to avoid, in later computations, the indeterminate 
forms (u/r)  (&/ax) and (v / r )  (&-lay) at E = 0. After the boundary conditions at the 
shock have been found, the solution can be continued in the subsonic and slightly 
supersonic regions by the inverse method and in the supersonic region by the 
method of characteristics. In  these computations, it  was found convenient to 
write the governing equations in terms of the dimensionless quantities 

Z = CoshP- 1, (36) 

7. Results and discussion 
In  the three problems calculated for air, the free-stream conditions and the 

shock shape are identical, and therefore the shock boundary conditions are also 
identical. The differences in the flow quantities in the field are then dependent on 
a local non-equilibrium parameter x, which can be shown from the non-dimen- 
sional equations to be (Ro/pm V,) (wo,/p) or (Ro/pmV,) (w&. The parameter Ro/V, 
is a characteristic time associated with the flow, while either (woa/po3p)-1 or 
(uN,/poop)-l is a characteristic time associated with the non-equilibrium process. 
xo,, evaluated at x = y = 0, was chosen to vary over a range from practically 
equilibrium flow (xo, = 100, R, = 10cm) through partial equilibrium flow 
(xo, = 5, R, = 0-5 cm) to frozen dissociation flow (xo, = xNI = 0). 

From the results of the computations, two regions of the flow field were found 
to be of particular interest: (1) the region near the axis of symmetry, where the 
flow behaves similarly to the flow through a normal shock and where the finite 
dissociation rates have a large influence on the flow properties, and (2) the region 
of flow expansion around the body near the surface, where the finite recombination 
rates have a large influence on the flow properties. The variations of a,, 7, @,p, 
and F in these two regions for the three examples calculated for air are shown in 
figures 5 to 14. The variation of aN for air is not given since in the present problems 
the dissociation of nitrogen is negligibly small. 

Figure 5 presents the distribution of oxygen atoms along the stagnation 
streamline for xo, = 100 and xo, = 5.  For x = 0, since thedissociation rate is zero, 
a, is constant and equal to zero throughout the shock layer. It can be seen that 
for xo, = 100, the oxygen dissociation is'near equilibrium a short distance from 
the shock, while for xoa = 5,  the dissociation is not in equilibrium until the 
stagnation point is reached. Both cases show the rapid dissociation near the shock 
due to the high temperatures and the exponential factor in the dissociation rate. 
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FIGURE 5. Variation of m w  fraction of atomic oxygen a. along the stagnation streamline. 
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Fmum 6. Variation of velocity dong the stagnation streamline. 
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The effect of the non-equilibrium is evident in figure 6 showing the variation of 
7 along the stagnation streamline. For xoa = 100, dissociation causes a rapid 
decrease in 7 near the shock. The detachment distance can be seen to be approxi- 
mately 0.064." For xoa = 5, the decrease in the velocity is less abrupt. The 
detachment distance has increased to approximately 0.066. For x = 0, little 
change in gradient of the velocity occurs. The shock detachment distance is 
approximately 0.081. 

The effect of the dissociation on the pressure, density, and temperature is 
similar to the effect on the velocity as can be seen from figures 7 to 9. Large 
variations in the flow quantities occur near the shock for xo, = 100. For xo, = 5, 
the variations are less rapid but extend to the stagnation point. For x = 0, the 
changes in Cp, j7, and are comparatively very small. 

0.8 

?s 

07 

0.6 

l'O. 

- 

- 

- 

0 5  0 ~ 0.02 004 006 0-08 0-10 

P 
FIGURE 7. Variation of pressure p along the stagnation streamline. 

Finite reaction rates have little effect on pressure as can be expected from 
normal shock-wave theory. However, dissociation causes the density to increase 
greatly, which is the main reason for the decrease in detachment distance as x 
increases. The most dramatic effect of dissociation is the temperature drop near 
the shock due to the absorption of energy by the dissociating molecules offsetting 
the slight increase in temperature due to compression of the gas near the stagna- 
tion point. 

* Note that all distances are made non-dimensional with respect to R,, the radius of 
curvature of the shock at  5 = 0. For detachment distances made non-dimensional with 
respect to the radius of curvature of the body at  5 = 0, the detachment distances aa 
presented here must be multiplied by the ratio of the shock radius of curvature to the body 
radius of curvature, approximately 1.3 in the present case. 
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FIGURE 9. Variation of temperature along the stagnation streamline. 
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The variation of a0 along the body surface is shown in figure 10. It can be seen 
that the percentage of oxygen dissociated is slightly higher near the stagnation 
point for xo, = 100 than for xo, = 5. However, as 5 increases, the amount of 
oxygen dissociated soon becomes greater for xo, = 5, indicating that the flow is 
partially frozen as it expands along the body surface. 

a 0  020 0 2 4 ~  

016 I I 1 I I I I 
0 0 1  0.2 0.3 0 4  0.5 0 6  0.7 

- 
X 

FIGURE 10. Variation of mass fraction of atomic oxygen a, along surface of body. 

- 
X 

FIGTJRE 11. Variation of velocity along surface of body. 

The effect of the finite recombination rates on 7, j5, p and on the body surface 
are shown in figures 11 to 14. There is little effect on the velocity except in the 
limiting case of frozen flow. It can be seen from figure 12 that, although the 
pressure at the stagnation point is different for all three bodies, the rate of 
decrease from this maximum is almost identical, For purposes of comparison, the 
Newtonian pressure is shown for the case xoa = 100. It can be shown that the 
effect of the non-equilibrium flow is to slightly increase the disagreement between 
the calculated and Newtonian pressure. 

The finite recombination rate causes the density to fall off less rapidly aa the gae 
expands, as can be seen from figure 13. The large differences in temperatures on 
the three bodies due to dissociation and recombination is shown in figure 14. Also 
noticeable is the greater rate of decrease in temperature for xo, = 5 and x = 0 due 
to the fact that in a rapidly expanding flow the recombination rate may be less 
than necessary to keep the flow in equilibrium. In this circumstance, the inert 
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degrees of freedom will retain their energy, and the temperature of the active 
degrees of freedom must decrease more rapidly to compensate for this. 

For the fourth calculation, that of pure oxygen, the same shock shape was 
assumed. Although the free-stream density and temperature were chosen 

Newtonian pressure, 

i? 
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FIGURE 12. Variation of pressure dong surface of body. 
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FIGURE 13. Variation of density p along surface of body. 

identical with those in the previous examples, the free-stream pressure was not 
the same due to a change in the molecular weight of the gas. Therefore the shock 
boundary conditions were not the same as before. A greater amount of the gas is 
dissociated in this case than in the previous examples. A correspondingly greater 
effect on the flow field is expected and does result. Except that the variations are 
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greater than for air with xo, = 5, the shape of the curves and general appearance 
of the flow fields are similar. 

A limitation to the present computational results is the inadequate knowledge 
of dissociation and recombination rates. A variation in the actual reaction rates 
from those assumed here of course does not invalidate the present results but does 
make the results applicable to bodies of different size. Another limitation to the 

16 
0 0 1  0 2  0.3 04 0 5  0.6 0.7 

- 
X 

FIGURE 14. Variation of temperature along surface of body. 

present results for air is the assumption that air consists of a mixture of oxygen 
and nitrogen atoms and molecules. No account has been taken of the interaction 
of oxygen and nitrogen with each other to form NO or other compounds, which 
may have an effect on the gas properties and especially the reaction rates. 
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